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The effect of correlations in neural networks 
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Institut f~ Thearetische F'hpik, Justus-Liebig UniversiW Heinrich-Buff-Ring 16, W-6300 
Giekn. Germany 

Received 7 Sepkmkr  1992, in final form 4 March 1993 

Abstract The effect of conelations in neural networks is investigated by wnsider@g biased 
input and output palm'" Statistical mechanics is applied @ study training times and intend 
potentials of the MINOVER and ADALME leaming algorithms. For the latter, a direet extension to 
generalization abilify is obtained. Comparison with computer simulations shows good apemen1  
with theoretical predictions. 

With biased pattems, we find a decrease in Uaining times and internal potentials for the 
MINOVER algorithm, which, however. does not lead to faster storage of a given information 
measure. In ADALME training. characteristic times undergo a transition from order I to order N 
at any finite bias, for the leaming of patterns as well as for the decay of the generalization error. 
This leads to a rescaling of the gain parameters. 

1. Introduction 

.The methods of statisticalm6chanics have been extensively used in the quantitative analysis 
of neural networks. An interesting feature is the network's perfomance during the leaming 
phase. We shall consider here two training algorithms in particular. For the ADALINE 
algorithm, the dynamical evolution of the G n i n g  error and the generalization, error have 
been studied 18, IO]. For the MINOVER algorithm, the distribution of leaming times has been 
computed [Ill. 

However, the dynamics were obtained for the simplest case of randomly chosen, 
uncorrelated patterns only. A question first put fonvard by Gardner [6] in the context 
of storage capacities is the effect of correlation between pattems. Gardner found that the 
storage capacity of the optimal network rises monotonically and continuously from cr, = 2 
for random patterns to a, = 00 for fully correlated patterns. 

Here, we shall investigate output and generalization ermm for correlated pattems in the 
ADALINE algorithm.' In contrast to ~ardner 's  result for the (static) storage capacity, for the 
ADALINE algorithm we will find a discontinuous jump in the dynamical behaviour of the 
eiror decay for any finite coirelatiou. This will lead us to a recalculation of typical time 
constants. 

For the MINOVER algorithm,  we^ shall calculate the distribution of leaming times. 
Furthermore,  we^ investigate the effect of redundancy of information. The information 
capacity of a set ofpatterns decreases as the pattems become more correlated; as a result, 
the errors decrease faster. We will show, however, that agiven information cannot be leamt 
any faster by introducing redundancy, i.e. by spreading it over a larger set of correlated 
pattems. 

t Resent address: Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX13NF'. UK. 
$ Present address: Physikalisches Instituf~ Julius-Maximilians Universit21, Am Hubland. W-8700 WOnburg, 
Federal Republic of Germany. 
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2. The model 

We consider a single-layer perceptron with input patterns c p  = (er, . . . ,e{) and desired 
outputs ('targets') r@ = ( rr ,  . . . , r:). The output at site i for pattern p is given by 

ur(t f 1) = si&h:(c)) (1) 

where 

is the post-synaptic field of pattern p. In general, this describes a feedfonvard network. If [e@) = ( T P J ,  however, input and output units become identical, i.e. we then consider an 
autoassociative network. Our formalism can thus be applied to both network types. 

An autoassociative network will be a fixed point of the dynamics (I)  if 

$,?h:(t) > 0 Vi,  p. (3) 

It was suggested [9] that larger values of the 'internal potential' r/'(f)hf"(t) represent 
stronger embedding of the pattem 1.1, we shall therefore also investigate the potential 
distribution. 

Following Gardner, we impose a correlation between the pattems by choosing all of 
them to have a bias. To distinguish input and output, we let the input bias be mi,,, the output 
bias mOyr. The $', rr are then independent random variables with distribution 

~($9 = ;(I +mi,,)6($' - 1) + -mi,,)S((F + 1) 

p ( r r )  = ; (I+ hOut)8(rr - 1) + - mout)8(r/' + 1). 

(4) 

(5) 

3. The MINOVER algorithm 

To date fast algorithms have been developed which allow the learning of a set of input- 
output relations in perceptrons [3,13]. Nevertheless the simplest learning strategy that 
can be implemented in perceptrons is given by the famous perceptron learning algorithm of 
Rosenblatt. As a variant of this algorithm, the MI"m algorithm was introduced by,Krauth 
and Mezard [9]. It optimizes the so-called stability of the patterns and has the advantage 
that an analytical treatment of its dynamics is possible. Numerical simulations show that 
the results are also good approximations to the standard perceptron learning algorithm. 

The MINOVER algorithm lifts the worst internal potential higher than any required internal 
potential U, 

c.fi" = t,!'hp c .  (6) 

This equation, normalized by IJI = &j", J;, gives the stabilim 

A = c/lJI. (7) 
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The dormalization is necessary since otherwise a global enlargement of J will have 
the effect of raising A. The MINOVER algorithm proceeds in finding, in each timestep, the 
pattem p with minimal f;". The couplings are then modified according to a Hebbian rule, 
8Jjj = ( f / N ) r r $ ; ,  in parallel for all output nodes i .  Starting from an empty network 
(Jij  = 0). it was shown to converge in a finite number of steps, maximizing for c -+ 00 

the stability A, i.e. maximizing the normalized internal potential for the worst embedded 
pattern p. Therefore, the MINOVER algorithm reaches the maximally possible stability limit 
given by Gardner~ 161. This stability limit can neither be exceeded by the introduction of 
a~threshold nor by choosing a'different representation for the pattems: first, Gardner [6] 
has shown that, for biased patterns,~the.effect of any threshold is compensated for by a 
corresponding bias in the couplings Jij. Second, for an alteration of the representation of 
patterns from c,? = ( + I ,  -1) (equations (4) and (5)) to U; = (1,O). where U; = O.S(g:+l) 
and m(v') = 0.5(m(E') + 1) are changed accordingly, the weight vector J in the old 
representation can be mapped onto the weight vector in the new representation, which 
involves a shift in the neuron activity threshold as well. However, since we have just 
indicated that the Gardner limit is insensitive to the threshold, this will not affect the 
maximally possible stability. 

For algorithms which do not reach the Gardner stability limit, the chosen representation 
will, however, affect the network performance [Z]. For example, Amit et a1 [l] have 
demonstrated a stability breakdown for biased patterns in the Hopfield network, and 
consequent papers show [4,141 that the combination of a modified Hopfield rule and an 
alternative representation of patterns will restore the Gardner limit. In this paper, we will see 
in section 4 that leaming times in the ADALINE algorithm increase for biased patterns. The 
connection of this increase to possible modification of the ADALINE rule and representation 
of the pattems will be indicated. 

For the MINOVER algorithm we shall calculate here the distribution of leaming times in 
pattern space, following Opper [I 11. 

Let t ,  be the number of steps pattern v was used for in updating J .  Normalizing d e  
learning times to the threshold c,  we introduce 

X" = t, /e (8 )  

obtaining 

Inserting (9) into (€9, we obtain for all output nodes i and for all patterns U 

Since all output nodes i are processed in parallel, we may consider just one of them, 

Defining the correlation matrix C by C,, = (l/N)r"rM $%$', and a vector 1 with 
omitting the i  from now on. 

all components equal to 1, we can write in pattem space 

f =CzSl .  (1 1)  



3168 A Wendemuth et a1 

From (7). we define a Hamiltonian 

assuming C is invertible in the last step. If this is not the case, a corresponding condition can 
always~ be imposed by Lagrange multipliers, leaving our result unaltered. The calculation of 
the normalized learning times x, now results in the minimization of (12) under constraints 
( I  I), (4) and (5). For f, > 1, the potential is not bound, and the minimization of H leads 
to aH/af ,  = ~ ~ = l ( C - i ) p v f v  = x, = 0, i.e. patterns with potentids f > 1(= 1) have 
leaming times x = O(> 0). 

3.1. Dz'strihution of learning times 

We now proceed to calculate the probability w(x)& that for arbitrary but fixed p, x, has 
values between x and x + dx. Thus 

w ( x )  = ( (S(x -x,N) (13) 

g ( k )  = ((eiXx~L)) (14) 

where the average is over patterns [rJ and [E") with distribution (4), (5). The 6 function 
is expressed as a Fourier transformation of the characteristic function 

the mean learning time being 

The characteristic function can be written as a formal thermodynamic average [l I]. We 
have to compute 

+m P 
g(k) = lim ((i 1 n[&, @(fv  - I)]exp(ikx,,, - p H ) ) ) .  (16) 

D-m z -m "-1 

Introducing replicas, this form will be obtained in the limit n +. 0 if kx, is not 
replicated 

The quadratic dependence of the Hamiltonian on [r,], {p] must be linearized in order 
to perform the average. However, the term ikx,,,,=l in the exponential makes it impossible 
to introduce directly an auxiliary Gaussian field for this purpose. Instead, if we express this 
term as a function of the conjugate variable I; of the @-functions, we show now that this 
problem is not going to arise. Rewriting the @-functions as exponentials, we obtain from 
(17) 
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integrations, where Transforming the ,nf=l~&ua diva  integrations into n:='=, dw, .. 
wv. =.nun + ih,, we find 

Performing nu,a dw,, integrations gives 

(20) 

In the (B + bo) limit, this becomes independent of k, which means the w terms do 
not contribute to g(k). Now we linearize the remaining quadratic term in the exponential 
by auxiliary fields &: 

The last term does not contribute to the result in the limit B + bo and can therefore 
be omitted. Comparison with the quadratic form in the original Hamiltonian (12) shows 
that the J s  introduced here are proportional to the components of the perceptron vector J. 
Insertion into (18) yields 

(21) 

The last term in the exponential (21) is of order l/n and factorizes in U and j .  
We may therefore perform the average with respect to (e) with distribution (4), keeping 
terms to second order in I / n .  Higher-order terms do not contribute to the result in the 
thermodynamic limit [7]. The exponential is then 

Considering the U summations, we see that only terms with U = p contribute to the 
exponent for n + 0. We introduce order parameters 
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and enforce them by 6 functions. Linearizing the last squared sum by a Gauss integration 
over an auxiliary field z, and assuming replica symmetry, the integrand then reads 

Again, the i, integrations contribute for a = 1 a special term # 0 to the integral. They 
are coupled with z and h, integrations. The remaining variables of integration are Ji.. 
the order parameters and their conjugate fields. Since these variables are not coupled to 
the i, integrations, they provide a constant factor in the exponential and can therefore be 
neglected. Performing the n + 0 limit, we are then left with 

where Dz is the Gaussian measure (dz/-/%)e-?I' and 

Performing the f i  integrations, and introducing 

H ( h )  = JmDx 
- 1 

this yields 

The H functions will differ from each other in the ,9 -+ w limit only for z + i\(l - 
mi.Mt)  =- 0. We shall therefore split the z interval: 

(2% 

with A = p ( Q  - q)/q and p(t) after (5). 
The parameters A, z\ and mi,,M have to be taken in the thermodynamic limit, i.e. at the 

saddle point of (17). Note that M always appears with me, reflecting that any input bias 
mi, is compensated for by a variation of the order parameter M .  We will therefore write 
f i  instead of mhM in the following. The saddle point has to be taken in (21). omitting 
the term kfi,,. We can directly apply Gardner's result [6] for fi and A, since in both 
cases we extremize the exponential under constraints given by corresponding 0 functions. 
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A comparison yields identical equations for hum + k t) &fi + 1; A M A. The 
corresponding equations do not depend on the input bias mi,,: 

The two equations (30). (31) for the order parameters A, fi, can be solved numerically. 
The third-order parameter can also be obtained from ~Gardner's results 161, in one line 
with the total leaming time, which is given by a ( x )  = ( l ~ / N ) ( ~ ~ = l x v ) z v , ~ .  For xu t 0, 
however, the intemal potential after learning is 1 = fu =- CL=, C,x,; Multiplying 
yields a ( x )  = (l/N)(x,,,xv'CYCLxCL) = ( 2 / N ) ( H ) .  At the saddle point, H is given by 
H = iN ~ ~ = l ( J j / c ) '  = $Nq, thus 

Figme 1. Total leaming time F of [he 
MINOVEB algorithm as a function of bias in 
the autoassociative net at~fixed capacity a. 

1: - a - 3.0 leist necessary, is follows from the critical 
solution to (M), (31). (This also applies U, 

v 
I- 

: f:: Note hat for a = 0.5, a bias of 0.542 is.at 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

m figures 3 and 4). 

Figure 1 shows the dependence of the total learning time on bias for autoassociative 
nets, i.e. mi. = mout. Now, we may also derive the learning time from the chatacteristic 
function (29) 

Using (27) and (30). we obtain 
m 

A(& fi) = aA3(1- +mom) 1 DzIz + &l - A?)]. (34) 

We now derive the distribution of learning times w(x)  from a Fourier transformation of 
- A ( l - ~ )  

g (k). .~ 

7=*1 
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N-UOO; 
n-0.1: m-0.6 
6-0.053 t 0.00, (sm“,.) 

6-0.054 F.w,  ) - 
v x * 

Figure 2. Distribution of normalized (to 
threshold c) leaming times in the m o m  

X dgmithm 

’ 

‘In figure 2, we choose parameters mi, = mom = 0.6, LY = 0.1 to distinguish the two 
Gaussian parts from each other. Comparison with computer simulations of 500 sets of 
pattems at network size N = 1200 show excellent agreement with the theoretical results. 
We explore a fraction Po of pattems which have learning time 0, i.e. which are stored 
together with the other patterns without being leamt explicitly (figure 3): 

‘.OT----- -----1 

---- 

Figure 3. Fraction of pallems which are not 
erplicirIy leamt in the MINOVER algorithm as 
a function of output bias. 

3.2. Internal potentials 

The distribution of internal potentials 6(f) = @(f - f,)) can now easily be evaluated in 
this framework. Again, we consider the Fourier transformation i(&) = (e’kf@). Evaluating 
the thermodynamic average (17). and rewriting the 0 functions as integrals over 6 functions, 
we earlier forced f, = h,. Thus the previous calculation directly gives an analogue to (25), 
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integration and splitting the z interval as before, we with G(h,  I;) as in (26). Doing the 

- 1  10.0 
* 

9 0  9 Y 
0 

8.0-4 

E" 5.0.. 

7.0-z 

'3 ' 6 .0-7 
E 

v 
% 4.0- 

--- (L = 1.0 
, --.. n r 0 . t  

4 

. "  

. . .  

0.0 
2 0 ~  011 012 013 014 . O : l  0:6 017 O h  019 I!O 4. Aveweintemal Potential in the 

MINOVER algorithm as a function of output 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1 . 4 ~  1.6 1.8 : 
f 

bias. 

~. ' Figure S. Dishibution ofintemal potentials 
hl the MlNOVER dgOriihm. 

The average intemal potential (figure 4) is then given by use of (34) and (38) 

The Fourier transformation of f ( k )  gives the potential distribution: 

$(f) = p f t )  K f  - l)H[-6(1- .4?r)l + O(f ~- 1) 
r=*l 

I1 x -exp[--A'(f- i\ 1 -  ar)' 
4 5  2 

Figure 5 shows the theoretical curve and simulation data ob&& with the same 
parameters as in figure 2. Note that the two Gaussian peaks are always centred at f c 1, 
leaving us with the truncated parts only. Po and the internal potentials depend on the output 
bias mDut only. 
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33 .  Interpretation and information storage 

Comparing the distributions (35) and (40), we find that patterns with internal potentials 
f > 1 have leaming times n = 0, as was required earlier. The two Gaussians for r = &l 
in the distributions show that pattems with rmaU z 0 are learnt more easily and are. 
stored more stably (smaller learning times, higber internal potentials) than their negative 
counterparts. This seems plausible from an investigation of the high-bias limit: for mh, moYt 
close to 1, most of the components of J will be positive. Thus most (5  = 1) pattems wiU 
satisfy the potential condition (11) automatically (high Po), leaving the adjusting of the 
weights to the (t = -1) pattems. However, since their proportion is small, the total 
leaming time decreases with the bias. Due to the easy embedding of all positiveoutput 
patterns, they will commonly satisfy the potential condition with f just slightly larger than 
I .  Thus (f) decreases with maul, and for mmt -f 1, ( f )  + 1. 

Finally, we investigate whether in an autoassociative network (mj,, = mout = m), a given 
information can be learnt faster by distribution into a larger number of biased patterns. The 
total information contained in a set of p = aN biased pattems with N bits is given by 
Itatag = N Z I ,  where the information capacity 

(=) +) 

I = a ln(0.5) ( T )  1 f m  In (7) 1 + m  + (q) In (7) I - m  } . (41) 

For fixed a, I decreases monotonically from l ( m  = 0) = a  to I(lml = 1) = 0. However, 
from an information processing point of view one has to investigate the case of fixed 
information capacity I. Then it is known [6] that U + m as Iml + 1,  i.e. sparsely coded 
(or biased) associative memories are able to store a diverging number of patterns. 

Thus, changing free parameters from (a, m) to (I, m) (and n = a(I ,  m) according 
to equation (41)). we solve for the total learning time (n) (equation (32)) with the 
conditions (30), (31). (41)). The result is given for three different information capacities in 
figure 6, showing that the total leaming time always increases with bias m. A 'minimal' 
representation of information in unbiased patterns which has no redundancy is therefore 
favourable for fast learning. However, the embedding of information will be weaker than 
in the biased case. 

- I-,= 

,-. 1-0.5 
-. 1-in Fw 6. Total leaming time r of the 

MINOVER algorithm as a funclion of bias in 
the autcnsscciative net at fixed information 

2 I -- . 
U.0 U.3 I." 

m capacity I .  
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4. The ADALINE algorithm 

Another way of imposing the fixed point condition (3) is to formulate a linear algOriuUn 
which attempts to satisfy for all i, U: 

fi" = 1. (42) 

The ADALINE algorithm [ 151 proceeds by gradient~descent on the error function to (42). 

altering the Jij by 

+ I) = Ji,(r) + 8 J i j ( t )  Vi, j .  

After parallel presentation of all patterns we obtain 

We aim  to compute the decay of the total leaning error, 

With (43)-(45), this obeys a recursion relation in pattem space, 

~Ei(t + I )  = (1 - yCi)Ei(r) 

where 1 is the unit diagonal matrix and C' the correlation matrix with elements 

Omitiing the index i, and starting with an empty network (Jij = 0) 

1 E(r)  = - x[BY],,~ '. where B = 1 - yC. 
p B , V ~  

(49) 

We shall solve this equation first for patterns with fixed cross correlation, then for 
general patterns. The first problem can be treated algebraically, providing us with eMcr 
(Le. non-averaged) results which will lead the calculation in the general case. 
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4.1. Fired cross correlation 

For the moment we restrict ourselves to biased pattems with fixed cross correlation 

By complete induction, we see that all diagonal elements b&) and all offdiagonal 
a, . rP&. They elements a,&) of the matrix (B)I can be written b,,(t) 

obey the recursion relation 
bI, a,&) 

where 

Thus we can compute the total error 

where the output correlation Z2 = ( I / p )  ~ P v c i P ,  r&. Applying~the recwsion~(51) 21 
times, we obtain 

Using the eigenvalues h1.z of A, we may define two Coefficients Bo. PI: 

A t 2  = Bo +PI . h , 2 .  (54) 

By the Cayley-Hamilton theorem, the corresponding matrix equation holds with the 
same coefficients, 

1 0  
, )+AA.  (55) 

If we draw the output from a set of r,, with constraint xi=, r, = pmM, Z2 is fixed, and 
we can compute E(r )  exactly. Inserting (54) and (55) into (53). we obtain the coefficients 
au, ba needed for (52). The final result then is 

2 EO) = (1 - m,)U - y(1 - u2)Iu + m&[1 - y(1 -I- ( p  - l)uz)la. (56) 

For non-vanishing input and output bias, we face the contribution of a large eigenvalue 
of order N to the training error, which was not present in the unbiased case [8]. Wile 
the first eigenvalue broadens into a spectrum, we will see that the large eigenvalue remains 
isolatedly present in the general case, forcing us to choose a gain parameter y of order 1/N 
to ensure convergence. 
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4.2. General. choice of patterns 

We rewrite the ermr decay (43) with the help of two identities. First, we shall use that for 
a real interval of integration and small q, 

In  the following, we leave the small imaginary part as understood and omit q. Then we 
obtain, using a method similar to that outlined in [12], for real U, 

dAAz'Im(ur(Al - B)-'u}. 1 1 -ur(BZf)u = - / 
P PZ -m 

(57) 

Furthermore, 

where e = (E, E , .  . . , E) and U,, = u,S,,. For E @ ) ,  U = 1. If we use the replica trick in 
the form 

a 
n-0 an 

In Z = lim -Z" 

we have to compute 

where 

We must perform the average over the term 

Linearizing the exponential with auxiliary Gaussian fields zja yields 

As in (21) ff, we expand $e exponential to order 1 / N ,  perform the average and introduce 
order parameters in z space 
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enforcing them by 6 functions with conjugate parameters &&b. Assuming replica 
symmetry, we obtain in the n + 0, N + M limit, after standard integrations, 

where 

[D] denotes integrations over q. 4, r, i. Averaging over the output represented in the 

exp{inffNR2(1 -m:ut +aNm:J}. (67) 

first term of (64) yields, for n -? 0, 

Note for later reference that this result holds only for distribution (5) with the rp drawn 
independently of each other, giving 

we would obtain 

This will be relevant later to study the (mOut = 0) behaviour of E(r) ,  for which we also 

After computing the saddle point (SP) with respect to the set of parameters {q, 4, r, F ] ,  
keep all ‘small’ factors of 0(1/N) for the moment 

we derive the argument of the integral (59): 



~. 
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After insertion of rsp from (72) into (71). we obtain imaginary parts (i), denoted I t ,  
due to mots of negative numbers; and (ii), denote& by I,, via 8 functions, due to zero 
denominators [i - L1-l. 

We find a spectrum of I I  terms in the interval i l  < i, e &, where 

x1.2 = y(1 T~Jr;)Z. (73) 

In this region,, for mi, = 0, 

. 
Since for 01 # 1, i i . 2  >'O,  the denominator of I1 remains non-zero. We may thus 

compute I2 more easily by changing the variable of integration to rsp = i(i), given by 
(72). excluding the I I  interval by this transformation: 

We obtain poles of the integrand at 

The transformation mapped the large eigenvalue to rz. It now becomes clear that we 
had to keep terms~of 0 ( 1 / N )  in the calculation, otherwise we would have lost rz in the 
contour of integration. .~ 

For ( I ' Z  1 ,  rl lies within~the~interval of integration. For rz, we must have 
.~ 

(79) rz e 1 + f i  w lminl > I/&. . .  

Using Im[r - ril-' = d ( r  - ri), the integral (77) can be performed. For mi. = 0, rz 
is not inside the integration area, and 

a - l  

h( 
= - @(cl - 1). 

mb=o 
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For mi. obeying (79). we obtain exactly the large eigenvalue given in (56). This follows 
since correlations between patterns are of order O(l/fi), leaving the large eigenvalue 
correct to O(l)t. 

(81) 
Before omitting O(lmi,l- I / r a  and expressions of order U ( I / N )  relative-to the 

leading terms, we shall have a closer look at the distribution of outputs. With condition (69). 
we had to replace m L  by (70) in our ksults, yielding a prefactor to the large eigenvalue 
term 

mkt  + cJ((1 - m : " t ) / f i ) .  (82) 
If we choose a gain parameter y = U(l ) ,  for mat = 0, mi, # 0, we would have a 

(83) 
 which diverges immediately. Computer simulations confirm this divergent behaviour. 
Regardless of mat, we shall therefore always choose y = U ( l / N )  for mi, # 0. For 
mi, = 0, however, the 0 function guarantees that the large eigenvalue will vanish. For 
small N simulations with low bias, though, the 0 function indicates that the large eigenvalue 
may not yet be encountered, e.g. for mi. = 0.1, o! = 0.3, N = 100 (figure 7). This argument 
is very loose, since the derivations are in the ( N ' +  00) limit (equation (75)), but might be 
a useful estimate for practical purposes. 

contribution 
o(I/&)(I - Norymi)2 = o(N=-'/*) 

2.0 . 01-0.3, Simul.. N-100. IO Wh. 
1.8 - a-0.3, m m  I I  

Figure 7. Characteristic training error decay 
time in ule ADALINE algorithm as a function 

m Of input vi. 

With this result in mind, we finally obtain the decay of the training error, restoring the 
original variables of integration: 

t For a detailed ueatmenf. see [fl. 
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with hl.2 = (1 qz a*. 
minimize the characteristic training error decay time T with respect to y ,  

The mi. = 0 result, is identical to [8].  using the methods outlined there, we can 

For mi. # 0, 

yopi = 2[Nami  + (1 - mi)( l  + (1 - .,6)2)]-' 

yields 

For any bias, t increases (decreases) with (Y for a c l(> I), diverging at (Y = 1 
according to T - (1 - In figure 7, we compare simulations at a = 0.3, N = 100 
with theoretical predictions. As mentioned earlier, for mi, = 0.1 the large eigenvalue could 
not be encountered. Since we are evaluating decay times of U ( I / N ) ,  simulations cannot 
be expected to be in excellent agreement with theory, but they prove to be within the error 
bounds. 

In both mi. = 0 and mi. # 0 cases, E, - @(a - 1) resembles the fact that, for E, = 0 
to be obtained, conditions (43) are a N  linear~equations for N variables 4, which can be 
satisfied only for a 6 1. 

4 3 :  Internal potentials 

Finally, we shall calculate the distribution of internal potentials after learning for (Y > 1. 
Choosing the Hamiltonian (43), we evaluate w ( f )  = (S(f f,)) by the characteristic 
function . .  

We proceed exactly as in section 3, deriving order parameters from the partition function 

The result is 
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In figure 8, we choose parameters (Y = 8, mm = 0.6 to distinguish the two Gaussian 
peaks. Simulation and theory are in good agreement, especially considering that with four 
runs at N = 50, the sample data are small. Again, the internal potentials are independent 
of the input bias. For a -+ 1, w ( f )  + S(f - l), showing that the N equations (43) are 
satisfied exactly. For 2 =- a > 1, the width of the Gaussians increases. For a > 2, the 
Gaussians are again sharper, approaching'w(f) + C,,, p(r)S( f  - mOutz) for (Y + M. 
This shows that a particular pattern's output 'sits' in the mean field created hy all the other 
patterns' outputs. Since we are considering the distribution after learning, all dependence 
on the input bias has been removed. With increasing U, the stahilization of patterns with 
output r = - sign(m,.J worsens, see figure 8. This leads to (f) + mLt for (I + W. 

. .  1.0 - 0.8 " 
'.; 3 ' 0.6 

0.4 

0.2 

0.0 

~~ 1- 
7 -  :, - S h U L  - m o r .  

Fwre 8. Eishibution of internal potentials 
in the AD" algorithm after learning. 
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4.4. Generalizution abilio 

Recently, Krogh and Hertz. [IO] have studied the generalization ability of the ADALINE 
algorithm in a continuous-time limit They obtained for the generalization error 

where vi = ui - Ji, U being the weight vector of the 'teacher'. The time development of 
vi was determined according to 

Retuming to discrete time steps, we write this as a vector in sites i: 

V ( t  + 1) = 4) - yAv(t) (1 - ~ A ) ' u  (95) 

where we started with an empty network J(t  = 0) = 0. Using equations (57) and (58). we 
write the generalization error 
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where 

with B = 1 - yA and (U), = U&. Note that the {z) span the space of sites now, in 
contrast to the pattern space earlier. We may therefore identify (97) with (59) if we formally 
let zp = 1 (as A contains no output), write instead of E , and exchange labels i and p 
in the end, which will transform a into a-l. Due to the distribution (4), there is no problem 
associated with the interchange 6; + 6j.  Finally, the leading factor a-’ which scaled E ( t )  
has to be removed. This procedure leads us to replace in (65) 

if we scale lulz =-N after p ++ j exchange. In (M), however, the replacement leads to 
E xi=, T~ + E xi=, U + T ~  E xi=, up, and we can formally reinterpret mout as the bias 
of U ,  i.e. after p cf j exchange, we define 

As in (70), the typical product (u,u,) will again’attain a variance of O( l / f i ) ,  leading 
to a non-vanishing, large eigenvalue term even for ri = 0. The resulting generalization error 
now follows directly from (84). (85): 

with h1.2 = (1 ~ f i ) ~ .  
In the continuous time limit, (1 - yh)” -+ e-=‘, where t was rescaled to ty.  Then (100) 

I S  identical to the solution given by Krogh and Hertz [lo]. Again, for m # 0 one has to 
operate in very small time steps, yon - O(l/N), and the resulting generalization error will 
be F ( m )  =[l-zi2](l-a)O(l-a) whichislessthaninthecaseofunbiasedpattems. From 
(99), one concludes that generalization becomes best for those ‘teachers’ pointing in an all- 
positive (or all-negative) direction of U space. Note that in previous works on generalization, 
the input was unbiased and therefore the results were independent of a specific teacher due 
to spherical symmetry. Here, with this symmetry broken, the result depends on the task to 
be learnt. If the teacher and the examples are biased, the learning updates add coherently 
in the teacher’s direction. Note that this results in a smaller generalization error than in 
the unbiased case, even though for fixed a the information content of the biased patterns is 
smaller than in the unbiased case (equation (41)). At first sight, this results seems counter- 
intuitive since generalization improves upon the presentation of less information in the 
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pattems. However, the fact that the presented pattems me biased can already be regarded 
as additional information in itself, since it evokes a biased perceptron vector J constructed 
in the leaming process. Any pattern bias will produce the mentioned learning updates which 
are coherent with the teacher, hence the difference in generalization errors after learning 
(equations (99) and (100)). This clearly shows the inRuence of the teacher in the learning 
problem. 

5. Outlook 

We discuss whether and how the effects of correlation presented in this paper can be taken 
into account by possible modifications to the learning algorithms. 

For the MINOVER algorithm, we have seen in section 3 that the effect of correlation is 
marginal. Therefore, there is no need to alter the learning procedure. 

For the ADALINE algorithm, we have found the learning times to be proportional to N 
for biased pattems, regardless of whether the patterns are classified according to a given 
output, or whether the classification is done by a rule. The investigation of fixed cross 
correlation had already indicated that this behaviour is due to the appearance of a large 
eigenvalue of order O(N) in the spectrum of the correlation matrix. This effect has been 
observed in the calculations for a general choice of patterns as well. 

Thus the aim of possible modifications to the ADALINE algorithm must be to remove 
this large eigenvalue. We expect that by constructing weights (in the spirit of Amit et 
al [I]) from pattems which are shifted by their input bias, the resulting modification of 
equation (45) would yield this removal and lead to reduced learning times. One then has to 
investigate whether a different representation of the pattems, as indicated in section 3, can 
enhance their stability. Furthermore, note that the storage capacity realized by ADALINE- 
type algorithms is always CY, = I since a linear system of equations (42) has to be solved, 
therefore no increase in the storage capacity is possible by a modification of the algorithm 
or the pattern representation. 

Clearly, such investigations are beyond the scope of this paper. We hope that the 
results obtained and the ideas expressed will, in the future, generate suitably constructed 
modifications to gradient descent algorithms like ADALINE, which are adapted to sets of 
correlated pattems. 
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